THOMSON REUTERS
ISSN 2348-8034

Global Journal of Engineering Science and Researches
 FURTHER RESULTS ON DOMINATION NUMBER OF A GRAPH AND ITS LINE GRAPH
 E. Murugan ${ }^{*}$ \& J. Paulraj Joseph ${ }^{2}$
 ${ }^{*} 1,2$ Department of Mathematics, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli- 627 012, Tamil Nadu, India

Abstract

Let G be a simple connected graph of order n and $\mathrm{L}(\mathrm{G})$ be its line graph. A subset S of V is called a dominating set of G if every vertex of $\mathrm{V}-\mathrm{S}$ is adjacent to some vertex in S . The domination number $\gamma(\mathrm{G})$ of G is the minimum cardinality taken over all dominating sets of G. In this paper, we characterize regular graphs and unicyclic graphs of odd order for which $\gamma(\mathrm{G})+\gamma(\mathrm{L}(\mathrm{G}))=\mathrm{n}-2$.

Keywords: Domination Number, Line Graph, Unicyclic Graphs, Regular Graphs.

I. INTRODUCTION

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a connected graph of order n and size m . The undefined terms and notations can be found in [5]. In 1956, Nordhaus and Gaddum [12] gave the lower and upper bound for the sum and product of chromatic number of a graph and its complement. In 1972, Jaeger and Payan [6] proved the same for domination number. The line graph $L(G)$ of a graph whose vertex set is $E(G)$ and two vertices of $L(G)$ are adjacent if and only if the corresponding edges are adjacent in G. The concept of edge domination was introduced by Mitchell and Hedetniemi [10]. A subset S^{\prime} of E is called an edge dominating set of G if every edge not in S^{\prime} is adjacent to some edge in S^{\prime}. The edge domination number $\gamma^{\prime}(\mathrm{G})$ of G is the minimum cardinality taken over all edge dominating sets of G . The domination number of a line graph $\mathrm{L}(\mathrm{G})$ of a graph G is the same as an edge domination number of a graph, that is $\gamma^{\prime}(\mathrm{G})=\gamma(\mathrm{L}(\mathrm{G}))$. Recently [11], the authors characterized lower and upper bound for the sum $\gamma(\mathrm{G})+\gamma(\mathrm{L}(\mathrm{G}))$. In this paper, we characterize $\gamma(\mathrm{G})+\gamma(\mathrm{L}(\mathrm{G}))=\mathrm{n}-2$ for regular graphs and unicyclic graphs of odd order.

II. PRELIMINARY RESULTS

The following results are required for our main theorems.
Theorem 2.1. ([4,13]) For a graph G with even order n and no isolated vertices, $\gamma(\mathrm{G})=\mathrm{n} / 2$ if and only if the components of G are the cycle C_{4} or the corona H o K_{1} for any connected graph H .

In [3] E. J. Cockayne, et al characterized connected graphs for which $\gamma(\mathrm{G})=\lfloor n / 2$. For this characterization, they defined six classes of graphs by using the following families of graphs. Let

$$
\begin{gathered}
\mathcal{G}_{1}=\left\{\mathrm{C}_{4}\right\} \cup\left\{\mathrm{G}: \mathrm{G}=\mathrm{H} \circ \mathrm{~K}_{1}, \text { where } \mathrm{H} \text { is connected }\right\} \\
\mathcal{G}_{2}=\mathcal{A} \cup \mathcal{B}-\left\{\mathrm{C}_{4}\right\}
\end{gathered}
$$

and
For any graph $\mathrm{H}, \delta(\mathrm{H})$ denote the set of connected graphs, each of which can be formed from H o K_{1} by adding a new vertex x and edges joining x to one or more vertices of H . Then define

$$
G_{\mathrm{a}}=\mathrm{U}_{H} \delta(\mathrm{H})
$$

Figure: 1

Fig. 1.
where the union is taken over all graphs H. Let y be a vertex of a copy of C_{4} and, for $\mathrm{G} \epsilon \mathcal{G}_{\mathfrak{z}}$, let $\theta(\mathrm{G})$ be the graph obtained by joining G to C_{4} with the single edge xy , where x is the new vertex added in forming G . Then define

$$
\mathcal{G}_{4}=\left\{\theta(\mathrm{G}): \mathrm{G} \in \mathcal{G}_{z}\right\}
$$

Next, let u, v, w be a vertex sequence of a path P_{3}. For any graph H , let $\mathcal{P}(\mathrm{H})$ be the set of connected graphs which may be formed from Ho_{1} by joining each of u and w to one or more vertices of H . Then define

$$
G_{5}=\mathrm{U}_{H} \mathcal{P}(\mathrm{H})
$$

Let H be a graph and $\mathrm{X} \in \mathcal{B}$. Let $\mathcal{R}(\mathrm{H}, \mathrm{X})$ be the set of connected graphs which may be formed from H o K_{1} by joining each vertex of $\mathrm{U} \subseteq \mathrm{V}(\mathrm{X})$ to one or more vertices of H such that no set with fewer than $\gamma(\mathrm{X})$ vertices of X dominates $\mathrm{V}(\mathrm{X})-\mathrm{U}$. Then define

$$
\mathcal{G}_{6}=\mathrm{U}_{H, X} \mathcal{R}(\mathrm{H}, \mathrm{X}) .
$$

Theorem 2.2.([3]) A connected graph G satisfies $\gamma(\mathrm{G})=\lfloor n / 2]$ if and only if $G \in \mathcal{G}=\bigcup_{i=1}^{6} \mathcal{G}_{\mathrm{i}}$.
Theorem 2.3.([14]) If G is a connected graph with $\delta(\mathrm{G}) \geq 3$, then $\gamma(\mathrm{G}) \leq(3 \mathrm{n}) / 8$.
Theorem 2.4.([2]) For any graph $G_{r}[n /(1+\Delta(G))] \leq \gamma(\mathrm{G}) \leq n-\Delta(\mathrm{G})$.
Theorem 2.5.([8]) If a graph G has no isolated vertices and $\gamma(\mathrm{G}) \geq 3$, then $\gamma(\mathrm{G}) \leq(\mathrm{n}+1-\delta) / 2$.
Theorem 2.6.([1]) For any connected graph G of even order $n, \gamma^{\prime}(G)=n / 2$ if and only if G is isomorphic to K_{n} or $\mathrm{K}_{\mathrm{n} / 2}$, $\mathrm{n} / 2$.
The graph obtained by identifying the centre of a subdivided star $S\left(S_{1, k}\right)$ with a vertex of C_{3} is denoted by $C_{3, k}$. The graph obtained by joining the centre of subdivided star $S\left(S_{1, k}\right)$ with a vertex of C_{4} by an edge e is denoted by $\mathrm{C}_{4, \mathrm{k}}(\mathrm{e})$.

Theorem 2.7.([1]) Let G be a connected unicyclic graph. Then $\gamma^{\prime}(\mathrm{G})=\lfloor n / 2\rfloor$ if and only if G isomorphic to $\mathrm{C}_{4}, \mathrm{C}_{5}$, $\mathrm{C}_{7}, \mathrm{C}_{3, \mathrm{k}}, \mathrm{C}_{4, \mathrm{k}}$ (e) for some $\mathrm{k} \geq 0$.

Lemma 2.8 Let H be any subgraph of G . Then $\gamma(\mathrm{G}) \leq \gamma(\mathrm{H})+\gamma(\mathrm{G}-\mathrm{V}(\mathrm{H}))$.
Lemma 2.9 If H is a subgraph of G, then $\gamma^{\prime}(\mathrm{G}) \leq \gamma^{\prime}(\mathrm{H})+\gamma^{\prime}(\mathrm{G}-\mathrm{E}(\mathrm{H}))$.
Notation 2.10 ([7]) If G is a graph with vertex set $\mathrm{V}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots\right\}$, then the graph obtained by identifying one of the end vertices of n_{2} copies of P_{2}, n_{3} copies of P_{3} at u_{1}, m_{2} copies of P_{2}, m_{3} copies of $P_{3} \ldots$ at $u_{2} \ldots$. is denoted by $\mathrm{G}\left[\mathrm{u}_{1}\left(\mathrm{n}_{2} \mathrm{P}_{2}, \mathrm{n}_{3} \mathrm{P}_{3}, \ldots ..\right) ; \mathrm{u}_{2}\left(\mathrm{~m}_{2} \mathrm{P}_{2}, \mathrm{~m}_{3} \mathrm{P}_{3}, \ldots.\right) ; \ldots ..\right]$.

III. MAIN RESULTS

Theorem 3.1 Let G be a connected unicyclic graph of odd order $\mathrm{n} \geq 5$. Then $\gamma(\mathrm{G})+\gamma(\mathrm{L}(\mathrm{G}))=\mathrm{n}-2$ if and only if G is isomorphic to one of the graphs $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots . ., \mathrm{G}_{29}$ given in Figure 2.

Proof: Let G be a connected unicyclic graph of odd order $\mathrm{n} \geq 5$. If $\gamma(\mathrm{G})+\gamma(\mathrm{L}(\mathrm{G}))=\mathrm{n}-2$, then we have the following two cases.

Case: $1 \gamma(\mathrm{G})=(\mathrm{n}-3) / 2$ and $\gamma^{\prime}(\mathrm{G})=(\mathrm{n}-1) / 2$.
By Theorem 2.7, G isomorphic to $\mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{3, \mathrm{k}}, \mathrm{C}_{4, \mathrm{k}}(\mathrm{e})$ for some $\mathrm{k} \geq 0$. But $\gamma(\mathrm{G})=(\mathrm{n}-1) / 2$ for these graphs.
Case: $\mathbf{2} \gamma(\mathrm{G})=(\mathrm{n}-1) / 2$ and $\gamma^{\prime}(\mathrm{G})=(\mathrm{n}-3) / 2$.
By Theorem 2.2, $G \in \bigcup_{i=2}^{6} \mathcal{G}_{i}$. If $G \in \mathcal{G}_{2}$, then it is easy to verify that $\gamma(\mathrm{L}(\mathrm{G}))=\gamma^{\prime}(\mathrm{G})=(\mathrm{n}-1) / 2$ for these graphs.

Subcase: $2.1 \mathrm{G} \in \mathcal{G}_{\text {a }}$

If H is connected, then by Lemma 2.9, $\operatorname{diam}(\mathrm{H})=1$ or 2 and so H is either K_{2} or star or C_{3} or C_{4} or C_{5} or $\mathrm{C}_{3}\left[\mathrm{u}\left(\mathrm{kP}_{2}\right)\right]$. If H is a star, then x is adjacent to exactly two vertices of H. Hence G is isomorphic to G_{1} or G_{2} which satisfy the hypothesis. If $\mathrm{H}=\mathrm{C}_{3}$ or C_{4} or C_{5} or $\mathrm{C}_{3}\left[\mathrm{u}\left(\mathrm{kP}_{2}\right)\right]$, then x is adjacent to exactly one vertex of H . When $\mathrm{H}=\mathrm{C}_{4}$ or C_{5} or $\mathrm{C}_{3}\left[\mathrm{u}\left(\mathrm{kP}_{2}\right)\right]$, we observe that, $\gamma^{\prime}(\mathrm{G})=(\mathrm{n}-5) / 2 \neq(\mathrm{n}-3) / 2$. If $\mathrm{H}=\mathrm{C}_{3}$, then G is isomorphic to G_{3} which satisfy the hypothesis. If H is disconnected, let $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{s}}$ be the components of H . Clearly exactly one component, say H_{i} is nontrivial and $\operatorname{diam}\left(\mathrm{H}_{\mathrm{i}}\right)=1$ or 2 and other H_{j} 's $(\mathrm{j} \neq \mathrm{i})$ are trivial. Then by the previous argument for $\mathrm{H}_{\mathrm{i}}, \mathrm{G}$ is isomorphic to G_{4} or G_{5} or G_{6} which satisfy the hypothesis.

Subcase $2.2 \mathrm{G} \in \mathcal{G}_{4}$

If H is connected, then we observe that $\operatorname{diam}(\mathrm{H})=1$ or 2 . By the definition of $\mathcal{G}_{4}, \mathrm{H}$ must be either K_{2} or star. Hence G is isomorphic to G_{7} or G_{8} which satisfy the hypothesis. If H is disconnected, then exactly one of its components is non-trivial whose diameter is 1 or 2 and others are trivial. Hence G is isomorphic to G_{9} or G_{10} which satisfy the hypothesis.

Subcase $2.3 \mathrm{G} \in \mathcal{G}_{5}$

If H is connected, then by Lemma $2.9, \operatorname{diam}(\mathrm{H})=1$ or 2 and so H is a star or C_{3} or C_{4} or C_{5} or $\mathrm{C}_{3}\left[\mathrm{u}\left(\mathrm{kP}_{2}\right)\right]$. If H is a star, then both u and w are adjacent to exactly one vertex of H (or) u and w are adjacent to two distinct vertices of H. Hence G is isomorphic to $\mathrm{G}_{11}, \mathrm{G}_{12}$ or G_{13} which satisfy the hypothesis. If $\mathrm{H}=\mathrm{C}_{3}$ or C_{4} or C_{5} or $\mathrm{C}_{3}\left[\mathrm{u}\left(\mathrm{kP}_{2}\right)\right]$, then either u or w is a pendant vertex (say w). When $H=C_{4}, C_{5}$ or $C_{3}\left[u\left(k P_{2}\right)\right]$, we observe that, $\gamma^{\prime}(G)=(n-5) / 2 \neq(n-$ $3) / 2$. If $H=C_{3}$, then $G \in G_{6}$.
If H is disconnected, let $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{s}}$ be the components of H . Then we have the following two cases.
Case: 2.3.1 Either u or w is a pendant vertex (say w).
Then exactly one component, say H_{i} is non-trivial and $\operatorname{diam}\left(\mathrm{H}_{\mathrm{i}}\right)=1$ or 2 and other H_{j} 's $(\mathrm{j} \neq \mathrm{i})$ are trivial. If H_{i} is a star, then u is adjacent to exactly two vertices of H_{i} and it is adjacent to each vertex of $H_{j}=K_{1}(j \neq i)$. Hence G is isomorphic to G_{4} or G_{5}. Clearly $\mathrm{H}_{\mathrm{i}}=\mathrm{C}_{3}$; otherwise $\gamma^{\prime}(\mathrm{G})<(\mathrm{n}-3) / 2$. If $\mathrm{H}_{\mathrm{i}}=\mathrm{C}_{3}$, then u is adjacent to exactly one vertex to each component of H. Hence G is isomorphic to G_{6}.

THOMSON REUTERS
[Murugan, 6(4): April 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 2649083
Impact Factor- $\mathbf{5 . 0 7 0}$
Case: 2.3.2 Both u and w are not pendant vertices.
Then < uvw > is isomorphic to C_{3} or P_{3}. If < uvw > is isomorphic to C_{3}, then u and w are adjacent to different components of H and H_{i} must be a tree. If H_{i} is trivial, then G is isomorphic to G_{14} for which $\gamma^{\prime}(\mathrm{G})=(\mathrm{n}-3) / 2$. If $\operatorname{diam}\left(\mathrm{H}_{\mathrm{i}}\right) \leq 2$, then H_{i} is a star and G is isomorphic to G_{15} or G_{16} which satisfy the hypothesis. Now let < uvw > be isomorphic to P_{3}. If $\mathrm{H}=\mathrm{C}_{3}$ or C_{4} or C_{5} or $\mathrm{C}_{3}\left[\mathrm{u}\left(\mathrm{kP}_{2}\right)\right]$, then by Lemma 2.9, $\gamma^{\prime}(\mathrm{G})<(\mathrm{n}-3) / 2$. Hence H_{i} must be a tree and note that $\operatorname{diam}\left(\mathrm{H}_{\mathrm{i}}\right)=0$ or 1 or 2 . Since H_{i} is a tree, both u and ware adjacent to exactly one vertex of $\mathrm{H}_{\mathrm{i}}($ or $)$ u and w are adjacent to two distinct vertices of H_{i}. If $\operatorname{diam}\left(H_{i}\right)=0,\left(H_{i}=K_{1}\right.$ for all $\left.i\right)$, then G is isomorphic to G_{17}. If $\operatorname{diam}\left(H_{i}\right) \leq 2$, then H_{i} is a star. Hence G must be one of the graphs G_{18}, G_{19}, G_{20} which satisfy $\gamma^{\prime}(G)=(n-3) / 2$.

Subcase $2.4 \mathrm{G} \in \mathcal{G}_{6}$

By the definition of $\mathcal{G}_{6}, \mathrm{X}$ must be C_{3} or C_{5}.
Case 2.4.1: $\mathrm{X}=\mathrm{C}_{3}$.
If H is connected, then H is a tree with $\operatorname{diam}(\mathrm{H}) \leq 2$ and so H is either K_{1} or a star $\mathrm{K}_{1, \mathrm{r}}(\mathrm{r} \geq 1)$. Clearly $|\mathrm{V}(\mathrm{U})|$ must be 1 . If $\mathrm{H}=\mathrm{K}_{1}$, then G is isomorphic to $\mathrm{C}_{3,1}$ but $\gamma^{\prime}(\mathrm{G})=(\mathrm{n}-1) / 2 \neq(\mathrm{n}-3) / 2$. If H is a star, then G is isomorphic to G_{21} or G_{22} which satisfy the hypothesis. If H is disconnected, then it is either totally disconnected or exactly one component, say H_{i} is of diameter at most 2 and other components H_{j} 's $(j \neq i)$ are trivial. It is clear that $H=K_{1}$ or a star and $|\mathrm{V}(\mathrm{U})|=1$ or 2 . Suppose $|\mathrm{V}(\mathrm{U})|=1$. If $\mathrm{H}_{\mathrm{i}}=\mathrm{K}_{1}$, then G is isomorphic to $\mathrm{C}_{3, \mathrm{k}}$ but $\gamma^{\prime}(\mathrm{G})=(\mathrm{n}-1) / 2 \neq(\mathrm{n}-$ 3)/2. If H_{i} is a star, then G is isomorphic to G_{23} or G_{24}. Suppose $|V(U)|=2$. If $H_{i}=K_{1}$, then G is isomorphic to G_{14}. If H_{i} is a star, then G is isomorphic to G_{15} or G_{16}.

Figure : 2

Fig. 2 Unicyclic Graphs satisfying $\gamma(G)+\gamma(L(G))=n-2$

Case 2. 4. 2: $\mathrm{X}=\mathrm{C}_{5}$.
If H is connected, then H is a tree with $\operatorname{diam}(\mathrm{H}) \leq 2$ and $|\mathrm{V}(\mathrm{U})|=1$. If $\mathrm{H}=\mathrm{K}_{1}$, then G is isomorphic to G_{25}. If H is a star, then G is isomorphic to G_{26} or G_{27}. If H is disconnected, then each component of H is trivial and $|\mathrm{V}(\mathrm{U})|=1$ or 2. If $|\mathrm{V}(\mathrm{U})|=1$, then G is isomorphic to $\mathrm{G}_{28} \cdot|\mathrm{~V}(\mathrm{U})|=2$, then G is isomorphic to G_{29}.

Conversely, if G is isomorphic to $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{29}$, then it can be easily verified that $\gamma(\mathrm{G})+\gamma(\mathrm{L}(\mathrm{G}))=\mathrm{n}-2$.
The following lemma 3.2 is useful for Theorem 3.3.

Lemma 3.2 If G is a connected 4-regular graph of order 11, then $\gamma(\mathrm{G})=3$.
Proof : Let G be a connected 4-regular graph of order 11. Clearly $\gamma(\mathrm{G}) \geq 3$. Let S be a γ-set of G. Let v be an arbitrary vertex of G and $N(v)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Consider $G^{\prime}=G-N[v]$. Since $\left|V\left(G^{\prime}\right)\right|=6$, let $V\left(G^{\prime}\right)=\left\{v_{5}, v_{6}, v_{7}\right.$, $\left.\mathrm{v}_{8}, \mathrm{v}_{9}, \mathrm{v}_{10}\right\}$. Clearly $\gamma\left(\mathrm{G}^{\prime}\right) \neq 1$. Let S^{\prime} be a γ-set of G^{\prime}. If $\left|\mathrm{S}^{\prime}\right|=2$, then $\mathrm{S}^{\prime} \mathrm{U}\{\mathrm{v}\}$ is a γ-set of G and hence $\gamma(\mathrm{G})=3$. Let E_{1} denote the set of edges between the vertices of G^{\prime} and $\mathrm{N}(\mathrm{v})$ in G . Since G is 4 -regular, $\left|\mathrm{E}_{1}\right| \leq 12$ and G^{\prime} has at most two isolated vertices.

Case 1: G^{\prime} has two isolated vertices.
Let $\mathrm{v}_{5}, \mathrm{v}_{6}$ be the two isolated vertices in G^{\prime} which are adjacent to all the vertices of $\mathrm{N}(\mathrm{v})$ in G . Then the remaining components of G^{\prime} are either $2 \mathrm{~K}_{2}$ or $\mathrm{K}_{3}+\{\mathrm{e}\}$ or C_{4} or $\mathrm{C}_{4}+\{\mathrm{e}\}$ or $\mathrm{K}_{1,3}$ or P_{4} or K_{4}. Since $\left|\mathrm{E}_{1}\right|=12, \mathrm{G}^{\prime}=\mathrm{K}_{4} \mathrm{U} 2 \mathrm{~K}_{1}$ and v_{1} is adjacent to both v_{5} and v_{6}. Then $\mathrm{S}=\left\{\mathrm{v}, \mathrm{v}_{1}, \mathrm{v}_{7}\right\}$ is a minimum dominating set of G and hence $\gamma(\mathrm{G}) \leq 3$ and so $\gamma(\mathrm{G})=3$.

Case 2: G' has one isolated vertex (say, v_{5}).
Then G^{\prime} is isomorphic to $\mathrm{H} \cup \mathrm{K}_{1}$, where $|\mathrm{V}(\mathrm{H})|=5$. Since $\left|\mathrm{E}_{1}\right| \leq 12, \mathrm{H}$ is connected and has at most one pendant vertex and $\Delta(H)=3$ or 4 . If $\Delta(H)=4$, let $d\left(v_{6}\right)=4$ in G^{\prime}. Then $S=\left\{v, v_{5}, v_{6}\right\}$ is a minimum dominating set of G and hence $\gamma(\mathrm{G})=3$. Now consider the case for $\Delta(\mathrm{H})=3$. Let $\mathrm{d}\left(\mathrm{v}_{6}\right)=3$ in H and $\mathrm{V}\left(\mathrm{H}-\mathrm{N}\left[\mathrm{v}_{6}\right]\right)=\mathrm{v}_{10}$. Clearly v_{10} must be adjacent to at least one of the vertices of $N(v)$, (say v_{1}) in G . Then $\mathrm{S}=\left\{\mathrm{v}, \mathrm{v}_{1}, \mathrm{v}_{6}\right\}$ is a minimum dominating set of G and hence $\gamma(\mathrm{G}) \leq 3$ and so $\gamma(\mathrm{G})=3$.

Case 3: G' has no isolated vertices.
Since $\left|E_{1}\right| \leq 12, G^{\prime}$ is connected and is isomorphic to C_{3} o K_{1}. Let $V\left(C_{3}\right)=\left\{\mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}\right\}$ and $\mathrm{v}_{8}, \mathrm{v}_{9}, \mathrm{v}_{10}$ be the corresponding pendant vertices of $\mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{v}_{7}$ in G^{\prime}. Since at least one $\mathrm{N}(\mathrm{v})$, say v_{1} must be adjacent to $\mathrm{v}_{8}, \mathrm{v}_{9}, \mathrm{v}_{10}$. Then $\mathrm{S}=\left\{\mathrm{v}, \mathrm{v}_{1}, \mathrm{v}_{5}\right\}$ is a minimum dominating set of G and hence $\gamma(\mathrm{G}) \leq 3$ and so $\gamma(\mathrm{G})=3$. This completes the proof.

Theorem 3.3 Let G be a connected k -regular graph of order $\mathrm{n} \geq 5$. Then $\gamma(\mathrm{G})+\gamma(\mathrm{L}(\mathrm{G}))=\mathrm{n}-2$ if and only if G is isomorphic to either $\mathrm{K}_{5}, \mathrm{~K}_{6}, \mathrm{~K}_{4,4}$ or any one of the graphs $\mathrm{F}_{1}, \mathrm{~F}_{2}$ given in Figure 3.

Figure : 3

Fig. 3 Regular graphs satisfying $\gamma(G)+\gamma(L(G))=n-2$

Fig. 4 All 4-regular connected graphs of order 9
Proof: Assume that $\gamma(\mathrm{G})+\gamma(\mathrm{L}(\mathrm{G}))=\mathrm{n}-2$. Then we have the following two cases.
Case 1: n is even
If $\gamma(\mathrm{G})=\mathrm{n} / 2$ and $\gamma^{\prime}(\mathrm{G})=(\mathrm{n} / 2)-2$, then by Theorem 2.1 and hypothesis, no graph exists. If $\gamma(\mathrm{G})=(\mathrm{n} / 2)-2$ and $\gamma^{\prime}(\mathrm{G})=\mathrm{n} / 2$, then by Theorem 2.6, G is isomorphic to K_{n} or $\mathrm{K}_{\mathrm{n} / 2, \mathrm{n} / 2}$. If $\mathrm{G}=\mathrm{K}_{\mathrm{n}}$, then $\gamma(\mathrm{G})=1=(\mathrm{n} / 2)-2$ which gives $n=6$ and hence $G=K_{6}$. If $G=K_{n / 2, n / 2}$, then $\gamma(G)=2=(n / 2)-2$ which gives $n=8$ and hence $G=K_{4,4}$.

Case 2: n is odd
If $\gamma(\mathrm{G})=(\mathrm{n}-1) / 2$ and $\gamma^{\prime}(\mathrm{G})=(\mathrm{n}-3) / 2$, then by Theorem 2.2 , G is either C_{5} or C_{7} for which $\quad \gamma^{\prime}(\mathrm{G})=(\mathrm{n}-1) / 2 \neq$ $(\mathrm{n}-3) / 2$. Now we consider the case $\gamma(\mathrm{G})=(\mathrm{n}-3) / 2$ and $\gamma^{\prime}(\mathrm{G})=(\mathrm{n}-1) / 2$. If G is 2-regular, then $\mathrm{G}=\mathrm{C}_{\mathrm{n}}$. We observe that $\gamma^{\prime}\left(\mathrm{C}_{\mathrm{n}}\right)=\lceil n / 3\rceil=(\mathrm{n}-1) / 2$ which gives $\mathrm{n}=5$ and hence $\mathrm{G}=\mathrm{C}_{5}$ but $\gamma(\mathrm{G})=2 \neq(\mathrm{n}-3) / 2$. If $\mathrm{k} \geq 3$, then by Theorem 2. $3, \mathrm{n} \leq 12$. Since n is odd, k must be even and by hypothesis, $\mathrm{n} \in\{5,7,9,11\}$. If $\mathrm{n}=5$, then $\mathrm{G}=\mathrm{K}_{5}$ for which $\gamma(\mathrm{G})=1=(\mathrm{n}-3) / 2$ and $\gamma^{\prime}(\mathrm{G})=2=(\mathrm{n}-1) / 2$. If $\mathrm{n}=7$, then k must be either 4 or 6 . If $k=6$, then $G=K_{6}$ for which $\gamma(\mathrm{G})=1 \neq(\mathrm{n}-3) / 2$. If $\mathrm{k}=4$, then by [8], there are exactly two graphs $\mathrm{F}_{1}, \mathrm{~F}_{2}$ which are satisfy the hypothesis. If $\mathrm{n}=9$, then $\mathrm{k}=4$ or 6 or 8 . If $\mathrm{k}=4$, then by [8], there are sixteen 4 -regular graphs of order 9 (See Figure 4) and it is easy to see that no graph satisfies the hypothesis. If $\mathrm{k}=6$, then by Lemma $2.8, \gamma(\mathrm{G})<(\mathrm{n}-3) / 2$, a

THOMSON REUTERS
[Murugan, 6(4): April 2019]
ISSN 2348-8034
DOI- 10.5281/zenodo. 2649083
Impact Factor- $\mathbf{5 . 0 7 0}$
contradiction. If $\mathrm{k}=8$, then $\mathrm{G}=\mathrm{K}$, for which $\gamma(\mathrm{G})=1 \neq(\mathrm{n}-3) / 2$. If $\mathrm{n}=11$, then $\mathrm{k}=4$ or 6 or 8 or 10 . If $\mathrm{k}=6$ or 8 or 10 , then it is easy to see that $\gamma(\mathrm{G})<(\mathrm{n}-3) / 2$. If $\mathrm{k}=4$, then by Lemma $3.2, \gamma(\mathrm{G})=3 \neq(\mathrm{n}-3) / 2$. Converse is obvious by verification.

REFERENCES

1. S. Arumugam and S. Velammal, Edge Domination in Graphs, Taiwanese Journal of Mathematics, 2(2)(1998), 173-179.
2. C. Berge, Theory of Graphs and Its Applications, Hethuen, London, 1962.
3. E. J. Cockayne, T. W. Haynes, and S. T. Hedetniemi, Extremal graphs for inequalities involving domination parameters, Discrete Math., 216(2000) 1-10.
4. J. F. Fink, M. S. Jacobson, L. F. Kinch, and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar.,16:287-293, 1985.
5. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, New York, Marcel Dekkar Inc., 1998.
6. F. Jaeger and C. Payan, Relations due Type Nordhaus-Gaddum pour le Nombre d'Absorption d'un Graphe Simple, C. R. Acad. Sci. Paris Ser. A, 274(1972), 728-730.
7. B. S. Karunagaram and J. Paulraj Joseph, Journal of Discrete Mathematical Sciences \& Cryptography, Vol.9(2006), No. 2, pp. 215-223.
8. D. Marku, A new upper bound for the domination number of a graph, Quart. J. Math. Oxford Ser. 2, 36:221223, 1985.
9. Markus Meringer, Fast Generation of Regular Graphs and Construction of Graphs, J. Graph Theory, 30:137-146, 1996.
10. S. Mitchell and S. T. Hedetniemi, Edge domination in Trees, Congr. Numer, 19 (1977), 489-509.
11. E. Murugan and J. Paulraj Joseph, On the Domination Number of a Graph and its Line Graph, International J. Math. Combin., Special Issue 1(2018) 170-181.
12. E. A. Nordhaus and Gaddum, On Complementary Graphs, Amer. Math. Monthly.,63(1956)177-182.
13. C. Payan and N. H. Xuong, Domination-balanced graphs, J. Graph Theory, 6:23-32, 1982.
14. B. Reed, Paths, stars and the number three, Comb. Prob. Comp. 5 (1996), 277-295.
